## Math 113 homework due $1 / 23$

Go to the roots, of these calculations! Group the operations. Classify them according to their complexities rather than their appearances! This, I believe, is the mission of future mathematicians

$$
\text { - Évariste Galois }{ }^{1}
$$

(1) Read and review sections 12.1 and 12.2 in the book and the supplemental reading.
(2) For this question we will work in $D_{10}$, the group of symmetries of the pentagon. The standard form for these symmetries that we established in class is given in the following list:

$$
I, R, R^{2}, R^{3}, R^{4}, F, F R, F R^{2}, F R^{3}, F R^{4}
$$

Use the relations $R^{5}=I, F^{2}=I$, and $R F=F R^{4}$ to write each of the following in one of the standard forms.
(a) $F R F$, (b) $\left(R^{2}\right)\left(R^{4}\right)\left(R^{3}\right)$, (c) $(F R)\left(R^{2}\right)(F R)(F R)$, (d) $R F R F$
(3) Show that $D_{8}$, the group of symmetries of the square, is generated by $R_{90}$ (rotation by 90 degrees) and $F$ (vertical flip).
(4) Recall that $Z_{6}$ is the group of rotations of the hexagon. It has elements $I, R, R^{2}, R^{3}, R^{4}, R^{5}$ and the single relation $R^{6}=I$. The element $R$ clearly generates this group (meaning every element is obtained by combining R with itself).
(a) Does $R^{2}$ generate the group?
(b) Does $R^{3}$ generate the group?
(c) Does $R^{5}$ generate the group?

In each case, explain why or why not.
(5) Question 11.9 Hint: there is an easy way to do this!

From the reading on the classification of finite simple groups:
(6) Show that there is no subgroup of $D_{8}$ that is structurally the same as $C_{3}$.
(7) According to Ewes, what are the roles of abstraction and classification in mathematics? Why are they important? Do you agree?

[^0]
[^0]:    ${ }^{1}$ I was tempted to include this quote from Galois instead, but thought it insufficiently inspiring: "Genius is condemned by a malicious social organization to an eternal denial of justice in favor of fawning mediocrity." Though he was a brilliant mathematician and founded much of modern group theory, Galois had a tough life, a fierce temper (often aimed at his professors!) and an unfortunate death.

